
STAR Collaboration Meeting, June 2001

Tonko Ljubicic / BNL 1

The Event Pool
and

Online Histograming Tutorial

Two Parts:
• Event Pool Mechanics (myself)
• Online QA Histograms (Sergey Panitkin)

Event Pool Mechanics

What is the Event Pool (EVP)?

1) A Sun 450 Enterprise computer in the DAQ room at
the experiment with 4 SPARC CPUs, 1.5 GB RAM
and 350 GB of disk running Solaris 2.8 (with a 32 bit
kernel) called evp.star.bnl.gov

2) The cached (“pooled”) set of events sampled from
the DAQ data stream and stored locally on an
accessible disk for a short time period (“The Event
Pool Store”)

3) The mechanism of getting “fresh” events served
directly from the ongoing run (“The Event Pool
Reader”) .

4) A set of libraries which support detector specific
raw data unpacking (“The Detector Readers”)

5) The organization of it all…



STAR Collaboration Meeting, June 2001

Tonko Ljubicic / BNL 2

Organization

Store

• A “run” is a directory with the run’s number as the name (i.e.
“1234001”)

• An event is a single file within that directory with its sequence
number as the name (i.e. “1”, “212”,…)

• Thus:

evp.star.bnl.gov node name
/a file system

1234001 directory
1 file/event
2
…

1235012
1
…

/b
/c
/d
/e

EVP

BB

DISK
/a
/b
/c
/d
/e

Clients

Ethernet

Myrinet



STAR Collaboration Meeting, June 2001

Tonko Ljubicic / BNL 3

• All the disks (file systems) are exported READ_ONLY
to *.star.bnl.gov via NFS

• Runs may get renamed to “*_DELETE” if the Run
Control Operator marks the run as “don’t keep” upon
end-of-run in which case a cron job will zap them in the
night (or so…)

• Runs will get deleted without prior notice when EVP
runs out of space…

Requests from the Live Feed

• The clients communicate with a separate task on
evp.star via TPC/IP and not directly with DAQ

• The events get stored only if there is a current
requestor ÿ no requests == no events stored

• The event requests get pooled so multiple requests
may end up getting one single event which will be
served to all of them ÿ efficient from DAQ’s
perspective…

• The requestor only receives the file name of the event
from the EVP – the actual data gets transferred via NFS
at the clients discretion thus : you must be able to
mount evp.star via NFS!

• The requests can be by “type”, currently any
combination of:

o TOKEN_0 (i.e. pedestals, RMSes)
o PHYSICS (trigger command 4)
o SPECIAL (trigger command not 4)
o ANY (any of the above)



STAR Collaboration Meeting, June 2001

Tonko Ljubicic / BNL 4

• There is a set of #includes and a library which does all
of that (and more) for Solaris and Linux ÿ libevp.a

evpReader

• A “class evpReader” is all you need to get events
from either: live feed, cached EVP runs (aka
directories) or standard DAQ raw data files

• Supported in binary for Linux & Solaris

Digression: code organization

• All the relevant stuff is on daqman.star.bnl.gov in the
directory /RTS which is exported via NFS to
*.star.bnl.gov � you must have access to this directory
if you plan to use the evpReader interface.

Relevant parts:

/RTS/include/EVP/evpReader.hh class declaration
/RTS/lib/SUN/libevp.a
/RTS/lib/LINUX/libevp.a precompiled libraries
/RTS/src/EVP_READER sources directory
/RTS/src/EVP_READER/special.C example code
/RTS/src/EVP_READER/Makefile.special makes “special”

!!! PLEASE LOOK IN evpReader.hh AND special.C !!!



STAR Collaboration Meeting, June 2001

Tonko Ljubicic / BNL 5

Example usage:

#include <EVP/evpReader.hh>

…

class evpReader *evp = new evpReader(NULL) ;
or

class evpReader *evp = new evpReader(“/evp/a/1234001”) ;
or

class evpReader *evp = new evpReader(
“st_pedestal_1234001_raw_001.daq”) ;

FOREVER { // loop forever

char *mem = evp->get(0,EVP_TYPE_ANY) ;
if(mem == NULL) { // event NOT valid!!!

switch(evp->status) {
case EVP_STAT_OK :

// event is not yet available – repeat get!
continue; // back to FOREVER

case EVP_STAT_EVT :
// event is bad – repeat get and print error msg.
continue ; // back to FOREVER

case EVP_STAT_EOR :
// end-of-file/run signaled – up to you…
continue ; // back to FOREVER

case EVP_STAT_CRIT :
// really bad error – shouldn’t happen – call me
exit(-1) ; // nothing you can do anymore…

}
}

// mem is valid (non-NULL) and it actually
// points to the beginning of the event. At this stage the
// event is memory mapped to your process’es virtual memory

char *datap = datapReader(mem) ;
// datap now points to the beginning of the DATAP structure
// this step is necessary if you plan to use the new
// detector unpackers/readers



STAR Collaboration Meeting, June 2001

Tonko Ljubicic / BNL 6

// an example detector reader/unpacker
int ret = tpcReader(datap) ;

if(ret < 0) {
// bad event, error in unpacking etc.

} else if (ret == 0) {
// no TPC in this event

} else {
// do your stuff here…

}

} // end FOREVER

Detector Readers/Unpackers

• Unpack raw DAQ data to detector specific, humanly
usable format

• All exist but most of them just check the data headers
for consistency only and return the total size in bytes

• Currently implemented: TPC, SVT, FTPC & TRG (parts
of it…)

• All xxxReaders use statically allocated storage
(malloc/new not used) which gets overwritten (reused)
upon every call

• TPC example (con’t from above):

…
if(ret > 0) { // see example above…

// the return value is the length of the whole TPC
// contribution in bytes

printf(“TPC found with length of %d bytes\n”,ret) ;

for(s=0;s<24;s++) { // sectors
for(r=0;r<45;r++) { // rows
for(p=0;p<182;p++) { // pads
for(cou=0;cou<tpc.counts[s][r][p];cou++) {

uchar adc8 = tpc.adc[s][r][p] ;
ushort timebin = tpc.timebins[s][r][p] ;

}}}}



STAR Collaboration Meeting, June 2001

Tonko Ljubicic / BNL 7

// NOTE: sectors, rows, pads & timebins start from 0
// NOTE: the ADC data is 8 bit - not 10 bit

}

Conclusion

• Look in the code example “special.C” as well as the
class declaration “evpReader.hh” and try to
understand the details yourself – it’s not so hard, ÿ

• Support from me will be very limited in the next few
months but I’ll try – use the RTS mail server for
questions (contact me if you want to be on the maling
list…)

• Some detector readers (i.e. tpcReader ) use a lot of
memory at startup (about 300 MB in TPC’s case) which
may cause bizarre problems under Linux systems
which have less than 500 MB (or so…) of RAM+swap
configured


